Министерство науки и высшего образования РФ Федеральное государственное автономное образовательное учреждение высшего образования

«СИБИРСКИЙ ФЕДЕРАЛЬНЫЙ УНИВЕРСИТЕТ»

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ (МОДУЛЯ)

Б1.В.ДВ.08.01 Методы спектрального анализа							
наименование дисциплины (модуля) в соответствии с учебным планом							
Іаправление подготовки / специальность							
22.03.01 МАТЕРИАЛОВЕДЕНИЕ И ТЕХНОЛОГИИ МАТЕРИАЛОВ							
Іаправленность (профиль)							
22.03.01.02 Физико-химия материалов и процессов							
Рорма обучения очная							
од набора 2020							

РАБОЧАЯ ПРОГРАММА ЛИСШИПЛИНЫ (МОЛУЛЯ)

Программу составили	
	К.т.н., Доцент, Дубинин П.С.
	получость инишизані фамициа

1 Цели и задачи изучения дисциплины

1.1 Цель преподавания дисциплины

«Методы спектрального анализа» является специальной дисциплиной, дающей студентам знания в области применения физических методов в химии для исследования строения веществ и динамики их превращений. В курсе базирующиеся облучении рассматриваются методы, на веществ регистрации электромагнитными излучениями различной частоты И спектральных характеристик излучения, прошедшего через образец, называемые, спектральные методы исследования.

Предметом курса являются современные спектральные методы исследования веществ: масс-спектроскопия, колебательная спектроскопия, ядерный магнитный резонанс, ядерный гамма-резонанс, спектроскопия электронного поглощения и фотоэлектронная спектроскопия, рентгеновский флуоресцентный анализ.

Объектами изучения являются: химические соединения, газообразные и твердые вещества, растворы, а также физические и физико-химические явления, лежащие в основе взаимодействия веществ с электромагнитным излучением и пучками ускоренных элементарных частиц.

Целью преподавания дисциплины «Методы спектрального анализа» является освоение теоретических основ спектроскопических исследований; овладение методологическими и методическими приемами исследований; приобретение практических навыков исследования различных материалов на современном спектрометрическом лабораторном оборудовании.

1.2 Задачи изучения дисциплины

В задачи курса входит: теоретическое изучение основ спектральных исследований, основные методологические и методические приемы, необходимые для успешного применения этих методов, а также приобретение практических навыков работы с различными материалами на современном спектрометрическом лабораторном оборудовании.

1.3 Перечень планируемых результатов обучения по дисциплине (модулю), соотнесенных с планируемыми результатами освоения образовательной программы

Код и наименование индикатора достижения компетенции	Запланированные результаты обучения по дисциплине								
ОПК-2: способностью использ	овать в профессиональной деятельности знания о								
подходах и методах получения результатов в теоретических и									
экспериментальных исследова	аниях								
ОПК-2: способностью	Знать современные методы исследований состава,								
использовать в	структуры и свойств материалов.								
профессиональной									
деятельности знания о									
подходах и методах получения									
результатов в теоретических и									
экспериментальных	Уметь работать на современном контрольном,								
исследованиях	измерительном и испытательном оборудовании,								
	осуществлять операции контроля, измерения и								

испытания.

Владеть анализом и оценкой эффективности использования материалов.

ПК-4: способностью использовать в исследованиях и расчетах знания о методах исследования, анализа, диагностики и моделирования свойств веществ (материалов), физических и химических процессах, протекающих в материалах при их получении, обработке и модификации

ПК-4: способностью использовать в исследованиях и расчетах знания о методах исследования, анализа, диагностики и моделирования свойств веществ (материалов), физических и химических процессах, протекающих в материалах при их получении, обработке и модификации

Знать регламенты работы контрольного, измерительного и испытательного оборудования.

Уметь осваивать возможности нового оборудования и определять оптимальные режимы операций контроля, измерения и испытания. Владеть планированием внедрения нового оборудования на основе анализа его технических возможностей.

ПК-5: готовностью выполнять комплексные исследования и испытания при изучении материалов и изделий, включая стандартные и сертификационные, процессов их производства, обработки и модификации

ПК-5: готовностью выполнять комплексные исследования и испытания при изучении материалов и изделий, включая стандартные и сертификационные, процессов их производства, обработки и модификации

Знать принципы функционирования основного и вспомогательного оборудования.

Уметь описывать и объяснять этапы процессов контроля, измерения и испытания. Владеть анализом результатов испытаний и измерений, проверкой параметров полученных образцов на соответствие требованиям, описанным в техническом залании.

1.4 Особенности реализации дисциплины

Язык реализации дисциплины: Русский.

Дисциплина (модуль) реализуется без применения ЭО и ДОТ.

2. Объем дисциплины (модуля)

		C	ЭМ
Вид учебной работы	Всего, зачетных единиц (акад.час)	1	2
Контактная работа с преподавателем:	2,5 (90)		
занятия лекционного типа	1 (36)		
практические занятия	1 (36)		
лабораторные работы	0,5 (18)		
Самостоятельная работа обучающихся:	2,5 (90)		
курсовое проектирование (КП)	Нет		
курсовая работа (КР)	Нет		
Промежуточная аттестация (Экзамен)	2 (72)		

3 Содержание дисциплины (модуля)

3.1 Разделы дисциплины и виды занятий (тематический план занятий)

		Контактная работа, ак. час.																
	№ Модули, темы (разделы) дисциплины	Занятия семинарского типа																
		Занятия лекционного – типа				Самостоятельная												
№ п/п				Семинары и/или Практические занятия		Лабораторные работы и/или Практикумы		работа,	ак. час.									
			В том		В том		В том		В том									
			числе в ЭИОС	Всего	числе в ЭИОС	Всего	числе в ЭИОС	Всего	числе в ЭИОС									
1. B _B	ведение.																	
	1. Общая классификация спектроскопических методов.																	
	Электромагнитный спектр. Характеристики																	
	оптического излучения. Энергетическая характеристика																	
	участков электромагнитного спектра, используемых в																	
	различных спектроскопических методах. Параметры,	4																
	характеризующие оптическое излучение: длина волны,																	
	частота, интенсивность и т.д. Происхождение спектров																	
	поглощения и испускания. Диаграмма энергетических																	
	уровней атома и молекулы.																	
	2.							8										
2. M	етоды ИК-спектроскопии.	•		•			•		2. Методы ИК-спектроскопии.									

1. Теоретические основы ИК спектроскопии. Колебания и структура молекул. Качественный анализ. Классификация методов: анализ смеси органических веществ, идентификация индивидуального соединения. Подготовка проб к анализу. Выбор оптимальных условий записи спектра: толщина поглощенного слоя, рабочий диапазон длин волн, скорость сканирования, ширина щелей. Количественный анализ по ИК — спектрам: причины отклонения от закона Бугера — Ламберта — Бера. Спектры поглощения и отражения. Примеры применения.	6	8			
3. ИК-Фурье спектрометр Nicolet380. Идентификация					
индивидуального вещества и смеси веществ.			5		
Количественный анализ.					
4.				28	
3. Атомный спектральный анализ.	•				•
1. Классификация по способам регистрации.					
Качественный и количественный анализ.					
Атомно-эмиссионный анализ различных материалов.					
Атомно-флуоресцентный метод анализа. Атомно-					
абсорбционная спектроскопия Основы метода. Метод	0				
ААС с атомизацией пробы в пламени. Метрологические	8				
характеристики и мешающие влияния. Метод ААС с					
электротермическим способом атомизации пробы.					
Механизмы испарения и атомизации пробы в					
графитовых					
печах. Аналитические характеристики. Аппаратура.					

2. Атомный спектральный анализ.		10			
3. Устройство и порядок работы атомного спектрометра SOLAAR М в режиме абсорбции в пламени. Количественное атомно-абсорбционное определение предложенного металла в растворе методом калибровочного графика.			5		
4.				22	
4. Рентгеновская спектроскопия.					
1. Понятие рентгеновского спектра. Классификация методов рентгеновской спектроскопии. Непрерывное (тормозное) и характеристическое (линейчатое) рентгеновское излучение. Понятие рентгеноспектрального анализа (РСА). Классификация методов РСА по способу генерации рентгеновского излучения. Фотоэффект. Уравнение Эйнштейна. Рентгенофлуоресцентный метод анализа Основы метода. Аппаратурные основы РФА, методики анализа проб и обработки результатов. Разрешающая способность и спектральные наложения. Приборы для рентгеновского анализа. Спектрометры с волновой дисперсией, спектрометры с энергетической дисперсией. Основные блоки приборов и условия проведения эксперимента.	18				
2. Рентгеновская спектроскопия.		18			
3. Устройство и принцип работы рентгеновских волновых и энергодисперсионных спектрометров. Количественный анализ материалов по методу фундаментальных параметров на волновом спектрометре Shimadzu XRF-1800.			8		

4.					32	
Всего	36	·	36	18	90	

4 Учебно-методическое обеспечение дисциплины

4.1 Печатные и электронные издания:

- 1. Глубоков Ю. М., Головачева В. А., Дворкин В. И., Ищенко А. А. Аналитическая химия и физико-химические методы анализа: Т. 1: учебник для студентов вузов по химико-технологическим специальностям и направлениям: в 2-х т. (Москва: Издательский центр "Академия").
- 2. Алов Н. В., Василенко И. А., Гольтштрах М. А., Ищенко А. А. Аналитическая химия и физико-химические методы анализа: Т. 2: учебник для студентов вузов по химико-технологическим направлениям и специальностям: в 2-х т. (Москва: Академия).
- 3. Цитович И. К. Курс аналитической химии: учебник(Санкт-Петербург: Лань).
- 4. Мицуике А., Кузьмин Н. М. Методы концентрирования микроэлементов в неорганическом анализе: пер. с англ. (Москва: Химия).
- 5. Золотов Ю. А. Основы аналитической химии: Кн. 2. Методы химического анализа: учеб. пособие: в 2-х кн. (Москва: Высшая школа).
- 6. Тарасевич Н. И., Семененко К. А., Хлыстова А. Д., Алимарин И. П. Методы спектрального и химико-спектрального анализа(Москва: Издательство Московского университета).
- 7. Чудинов Э. Г., Бондарь В. В. Атомно-эмиссионный анализ с индукционной плазмой(Москва: Всесоюзный институт научнотехнической информации [ВИНИТИ] АН ССС□).
- 8. Данцер К., Мольх Д., Клячко Ю. А. Аналитика: систематический обзор: перевод с немецкого(Москва: Химия).
- 9. Лисичкин Г.В., Фадеев А.Ю., Сердан А.А., Нестеренко П.Н., Мингелев П.Г., Фурман Д.Б., Лисичкин Г.В. Химия привитых поверхностных соединений: Учеб. пособие для студентов вузов(Москва: ФИЗМАТЛИТ).
- 10. Зайдель А.Н. Атомно-флуоресцентный анализ(Ленинград: Химия).
- 11. Карпов Ю. А., Савостин А. П. Методы пробоотбора и пробоподготовки: учебное пособие(Москва: БИНОМ).
- 12. Пиксина О. Е., Ружников С. Г., Дубинин П. С. Рентгеновский спектральный анализ: лаб. практикум для студентов напр. 150100 « Материаловедение и технология новых материалов». (Красноярск: СФУ).
- 13. Лосев В. Н. Спектроскопические методы анализа: учеб.-метод. пособие [для магистрантов напр. подг. 150100 «Материаловедение и технологии материалов»](Красноярск: СФУ).
- 14. Симонова Н. С., Харитонова Л. Г., Елсуфьев Е. В., Молотковская Н. О. Современные методы физико-химического анализа: учеб.-метод. пособие [для студентов программы подгот. 150100.68.00.01 «Современные методы исследования процессов и материалов»] (Красноярск: СФУ).

4.2 Лицензионное и свободно распространяемое программное обеспечение, в том числе отечественного производства (программное обеспечение, на которое университет имеет лицензию, а также свободно распространяемое программное обеспечение):

1. Программный пакет Microsoft Office.

4.3 Интернет-ресурсы, включая профессиональные базы данных и информационные справочные системы:

- 1. Электронно-библиотечная система «БиблиоТех». Режим доступа: https://bibliotech.sspa.edu.ru/;
- 2. Университетская библиотека on-line. Режим доступа: http://www.biblioclub/;
- 3. Российский госу-дарственный педа-гогический университет им. А.И. Герцена. Электронная библиотека. Режим доступа: http://portal.gersen.ru/;
- 4. Единое окно доступа к образовательным ресурсам Федерального портала Российское образование. Режим доступа: http://window.edu.ru/window.

5 Фонд оценочных средств

Оценочные средства находятся в приложении к рабочим программам дисциплин.

6 Материально-техническая база, необходимая для осуществления образовательного процесса по дисциплине (модулю)

Кафедра располагает материально-технической базой, обеспечивающей проведение всех видов образовательной деятельности по дисциплине «Методы спектрального анализа», в соответствии с требованиями государственного образовательного стандарта подготовки бакалавров по направлению 22.03.01 «Материаловедение и технологии материалов».

Учебные классы и лаборатории кафедры оснащены необходимым оборудованием, позволяющим проводить лекционные, практические и лабораторные занятия в инновационной форме с применением активных методов обучения. Лекционные занятия проводятся с использованием интерактивной доски. Практические занятия проводятся в компьютерном классе.

Лабораторные занятия проводятся в аудитории 202 л.к. площадью 45,9 м2. Площадь, занимаемая лабораторным оборудованием и мебелью, составляет от 6 до 15 м2 (в зависимости от аудиторной мебели для размещения студентов). Норма площади на одного студента, согласно ГОСТ 12.4.113-82 «Система стандартов безопасности труда. Работы учебные лабораторные. Общие требования безопасности», составляет 4,5 м2. Таким образом, вместимость лаборатории — порядка 12 человек. При необходимости за счет задействования для размещения студентов учебной аудитории 203 л.к. можно повысить число занятых в занятии студентов до 15 человек, не более. В связи с изложенным, учебные группы численностью 16 человек и более делятся на подгруппы, состав которых сохраняется до окончания лабораторного практикума. Деление на подгруппы фиксируется в педагогической нагрузке преподавателя.

Лабораторные занятия проводятся в учебно-научных лабораториях, оснащенных современным программным обеспечением физических методов контроля качества вещества, материалов и изделий, а также соответствующим комплексом оборудования, включающем следующие научно-исследовательские приборы:

рентгенофлуоресцентный волнодисперсионный сканирующий спектрометр Shimadzu XRF-1800;

рентгеновский энергодисперсионный спектрометр ARL Quant'X, Thermo; атомно-абсорбционный спектрометр SOLAAR M;

ИК-спектрометр Thermo Scientific nicolet 380.